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Abstract. Malware families are evolving constantly, in order to evade the 

detection mechanisms, the authors modify the order of functions, add random 

useless code and add new features, it has been observed that these new variations 

share common characteristics with previous versions, these existing patterns in 

the malware allows us to generate characteristics to describe it, for later use in a 

machine learning algorithm. In this paper, we analyze different feature sets 

extracted from malicious portable executables which are used as input to a 

machine learning algorithm, these features are extracted using n-grams, and are 

used in three classification models: Logistic Regression, Random Forest and 

Support Vector Machines. 

Keywords: malware classification, N-grams, portable executable, machine 

learning, logistic regression, random forest, support vector machine. 

1 Introduction 

Malicious software currently represents a computational security problem, so it is 

important to recognize the prevalence and continuing growth of malicious software. In 

the year 2015, 16.7 million of new variants of malware were found, according to 

Symantec [1]. Most of the new malicious software is designed to evade the anti-

malware systems which use signature based methods to detect it. The authors modify 

the order of the functions, add random useless code, obfuscation techniques as packing 

in order to evade the detection methods. 

The malicious software analysis techniques are classified into dynamic and static 

approach. In dynamic analysis, malware’s information is collected from the operating 

system at runtime, such information can be system calls, network access and files, in 

this approach it is hard to simulate appropriate conditions in which the malicious 

software can execute its malicious functions, and at the beginning we do not know the 

time period needed to observe the malicious activity of the program. In static analysis, 

the information is gathered from the executable file without executing it, this 

information represents the expected behavior, in this approach features are extracted by 

an analyst, these features can be from the disassemble code or from the hexadecimal 

view of the binary. 
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In this paper we address the classification, using static features extracted from nine 

malicious software families obtained from a Microsoft database. Our approach is a non-

signature based method in which we use machine learning to generate a classification 

model to classify a given sample in one of the nine families used to generate the model. 

1.1 Scope 

The most commonly used operating system is the Microsoft Windows operating 

system, this make the operating system an attractive target for malware authors. The 

principal executable format in Windows is the Portable Executable format (PE), which 

is a Microsoft standard. In our work, all the samples are malicious software written in 

the Portable Executable format, some of them for 32-bit systems and others for 64-bit 

systems. 

2 Related Work 

Different approaches for malicious software detection have been presented for years, 

at first F. Cohen [2] showed that in general the problem of virus detection is 

undecidable. In [3] Harris and Miller establish that the characteristics extracted through 

the analysis of the binary code provide information about the content and structure, for 

example instructions, basic blocks, functions and modules. 

Machine learning for malware detection has been widely used, Siddiqui et al. extract 

variable length instructions sequences that can identify trojans from clean programs 

using data mining techniques [4]. Schultz et al. in [5] present a data mining framework 

to detect new malicious executables, they use different algorithms to generate 

classification models, the Multi-Naïve Bayes method was reported as the one with the 

best accuracy and detection rate over unknown programs with the value of 97.76%. 

In [6] different patterns were used to detect the presence of malicious content in 

executable files. The analysis is made principally taking in consideration the bytecode 

as in [7] where they compute statistical and information-theoretic features in a block-

wise manner to quantify the byte-level file content, and in [8] the authors use a static 

analysis methodology for representing malicious codes, their framework seeks to 

acquire the most important files, benign and malicious, in order to improve classifier 

performance. 

N-grams is a way to represent the malicious software content, it consists in generate 

substrings with length n from a larger string, since n-gram overlap, they do not capture 

just statistics about substrings of length n, but they implicitly capture frequencies of 

longer substrings as well [9], in [10] Santos et al. demonstrate that a n-gram-based 

methodology signatures can achieve detection of new or unknown malicious software, 

Abou-Assaleh et al. [9] demonstrates that applying the CNG method based on byte n-

gram analysis good results can be achieved, in [11] the authors use the n-grams to 

develop an automatic malware categorization system (AMCS) by observing the 

common characteristics shared by different malicious software families. 

The operational code (OpCode) also has been used as static information to represent 

malicious software, in [12] O’Kane et al. use OpCode to detect encryped malware using 

SVM, Santos et al. in [13] propose a method to detect unknown malware families, using 
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the frequency of appearance of OpCode sequences as a base, and in [14] Bashari Rad 

et al. use static analysis to generate histograms of machine instructions frequency to be 

used as a features to classify the obfuscated version of metamorphic viruses. 

Narayanan et al. in [15] obtained suggestions that every malware software 

belonging to a family has a distinct pattern, these patterns are quite similar between a 

family and distinguishable across other families. 

In [16] Srakaew et al. compare two malware classification methods using data 

mining, they use two different types of features: statistical features and abstract 

assembly features, they observed that the abstract assembly approach is more 

promising, giving high accuracy with less complicated model.  

3 Data Set 

The data set was obtained from a Microsoft repository, this data set contain nine 

different malware families which are Ramnit, Lollipop, Kelihos_ver3, Vundo, Simda, 

Tracur, Kelihos_ver1, Obfuscator.ACY and Gatak, the data set is unbalanced as can be 

observed in Fig. 1. 

 

Fig. 1. Sample distribution. 

4 Methodology 

In this section, we describe the malicious software classification process, in our work 

we use static features generated from the malicious samples. In general, there are three 

distinct stages when a machine learning malicious software detection approach is used, 

these sections are: Feature extraction, sometimes feature selection is applied in order to 

reduce the dimensionality of the file’s representation, and the generation of a classifier 

model using a machine learning algorithm. 

The flow followed in this work is shown in Fig. 2. in each stage, different methods 

are used and a different data representation is obtained. In the malware analysis process, 

the analyst mostly of the time only have the malicious executable to start with, is very 
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improbable to have the source code of a malware sample. So, it is convenient to 

transform the executable into a more manageable representation, in this work the ASM 

and hexadecimal view are used as the representation of the malicious files. 

 

Fig. 2. General framework of malware classification system. 

These new representations are processed to extract the information with which we 

want to work with, from the hexadecimal representation we extract only the 

hexadecimal code, the memory addresses are not taken into account. 

 

Fig. 3. Hexadecimal view from an executable file. 
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From the ASM representation we only use the OpCode field, ignoring the label field, 

the operand field and comment field: 

[𝐶𝑎𝑚𝑝𝑜 𝑑𝑒 𝑒𝑡𝑖𝑞𝑢𝑒𝑡𝑎]   [𝐶𝑎𝑚𝑝𝑜 𝑑𝑒 𝑂𝑝𝑐𝑜𝑑𝑒   [𝐶𝑎𝑚𝑝𝑜 𝑑𝑒𝑙 𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑜]]  [𝐶𝑎𝑚𝑝𝑜 𝑑𝑒 𝑐𝑜𝑚𝑒𝑛𝑡𝑎𝑟𝑖𝑜𝑠] 

The complete set of mnemonics present in the samples is not used, instead we use a 

reduced set of mnemonics, considered to be good in describe the malware samples. 

These instructions were selected using previous works in this topic. 

Table 1. Reduced set of mnemonics. 

and fstcs test nop 

int setle lea shld 

jnz xor jz jb 

fild sub jmp std 

imul fdvip mov sbb 

pop retn movzx setb 

loopd ja bt push 

jnb add lods dec 

pushf call rdtsc rep 

inc adc je cmp 

5 Feature Extraction 

The features are created with n-grams applied to the final representation of the sample, 

the final executable representation with the hexadecimal representation is shown in 

Figure 5. and the final executable representation with the ASM representation is shown 

in Fig. 6. 

Fig 4. Hexadecimal representation of an executable file. 

To these representation, the n-gram extraction method is applied, for the case of the 

hexadecimal we consider each character of the hexadecimal alphabet as a unit. 
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Fig 5. ASM representation of an executable file. 

In Fig. 7. can be observed the process to generate the n-grams from a string with a 

value of n equal to 4, the number of n-grams generated from a string with length L can 

be calculated as follows:  

𝐺𝑟 = 𝐿 − (𝑛 − 1), (1) 

where n is the length of the sub-strings. 

Fig. 6. N-grams generation process in the hexadecimal representation. 

For the case of the ASM representation we consider each mnemonic as a unit, in Fig. 

8. can be observed the process to generate the n-grams in this representation. 

Fig. 7. N-gram generation process in the ASM representation. 

After processing the samples into n-grams, the set of samples S can be represented 

as a matrix where each column represents a n-gram term and each row represent a 

sample 𝑠 ∈ 𝑆. As we are using the supervised learning approach we also have to include 

the label of each sample, in our case we have nine levels, each one representing a 

malware family. 

As can be observed in Fig. 9. between all the 𝑘  samples which compose 𝑆 =
{𝑠1, 𝑠2, ⋯ , 𝑠𝑘}  we generate a set of terms (n-grams) 𝑇 =  {𝑡1, 𝑡2, ⋯ , 𝑡𝑚}  which is 

composed for all the unique strings whit length 𝑛 generated by the extraction over all 
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the sample space, each cell in the terms space is filled with the normalized term 

frequency, showed in Equation 2: 

𝑡𝑓(𝑡, 𝑑) =  
𝑓(𝑡, 𝑑)

𝑚𝑎𝑥{𝑓(𝑤, 𝑑) ∶ 𝑤 ∈ 𝑑}
.                                             (2) 

Here we divide the frequency of a term 𝑡  in a determined document 𝑑  by the 

maximum frequency of some term 𝑤 in the same document. 

Sample label Terms (N-gram) 

𝑠1 𝑡1 𝑡2 𝑡3 𝑡4 ⋯ 𝑡𝑚 

𝑠2 𝑡1 𝑡2 𝑡3 𝑡4 ⋯ 𝑡𝑚 

𝑠3 𝑡1 𝑡2 𝑡3 𝑡4 ⋯ 𝑡𝑚 

𝑠4 𝑡1 𝑡2 𝑡3 𝑡4 ⋯ 𝑡𝑚 

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 

𝑠𝑘 𝑡1 𝑡2 𝑡3 𝑡4 ⋯ 𝑡𝑚 

Fig. 8. Samples representation matrix. 

6 Feature Selection 

With the n-grams a large number of features is generated, this number may vary 

according to the unique number of sub-strings that can be found in the extraction 

process over the sample space, this number depends in the alphabet used to represent 

the data, in our case for the hexadecimal representation the alphabet is 𝐴𝐻 =
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹}  which are the characters used to represent 

hexadecimal digits, and for the case of the ASM representation, the alphabet 𝐴𝐴𝑆𝑀 is 

composed by the forty mnemonics in Table 1. 

The number of substrings which represent the features in our machine learning 

approach has as an upper bound all the possible unique strings whit length 𝑛 that can 

be generated with our alphabet. 

𝑈𝐵 = (𝐴𝑙𝑝ℎ𝑎𝑏𝑒𝑡)𝑛.                                                    (3) 

As we are using machine learning to approximate the functional relationship 𝑓() 

between an input 𝑋 =  {𝑥1, 𝑥2, ⋯ , 𝑥𝑀}  and an output 𝑌 , based in a tuple relation 
{𝑋𝑖 , 𝑌𝑖}, 𝑖 = 1, ⋯ , 𝑁, sometimes the output 𝑌 is not determined by the complete set of 

the input features {𝑥1, 𝑥2, ⋯ , 𝑥𝑀} , instead, it is decided only by a subset of them 

{𝑥(1), 𝑥(2), ⋯ , 𝑥(𝑚)}, where 𝑚 < 𝑀. 

The irrelevant features may lead in increase the computational cost and overfitting, 

a rule of thumb about the relation between the number of samples and the features to 

describe them, this rule claim that the numbers of samples needed to make a good 

generalization has to be more or equal to ten times the number of effective features. 

𝑁 ≥ 10(𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠).                                            (4) 

Our sample space is composed of 7255 malicious software samples, and if for 

instance we generate the n-grams with a value of 𝑛 = 4  over the hexadecimal 
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representation, the upper bound number of features is 65536, which is a large number 

of features compared with the number of samples. 

7 Feature Sets 

We generate different feature sets and use them as an input of a machine learning 

algorithms to generate different classification models. The different feature sets 

generated are shown below:  

 Features generated using hexadecimal representation and the n-gram method 

with a value of  𝑛 = 2. 

 Features generated using hexadecimal representation and the n-gram method 

with a value of  𝑛 = 4. 

 Features generated using opcode representation and the n-gram method with 

a value of 𝑛 = 2. 

Also, a feature vector is generated using those generated by the hexadecimal 

representation with a value of 𝑛 = 2 and opcode representation with a value of 𝑛 = 2. 
The number of features generated with the different representations are shown in 

Table 2. 

Table 2. Number of features generated. 

Features Number of features 

Hexadecimal 𝑛 = 2 (D1) 257 

Hexadecimal 𝑛 = 4 (D4) 65537 

Opcode 𝑛 = 2 (D2) 1138 

Hexadecimal 𝑛 = 2 and Opcode 𝑛 = 2 (D6) 1394 

Taking into account the rule of thumb presented in (4) in three cases this is not 

fulfilled, so it was proposed to use feature selection to reduce the dimensions of those 

vectors. 

The feature selection used in this work is the univariate feature selection, using the  

𝒳2 metric which is used to test the independence of two events, the method examines 

each feature independently to determine the strength of the relationship of the feature 

with the response variable. 

Table 3. Number of features generated by applying feature selection. 

Feature Number of 

features 

Hexadecimal 𝑛 = 4 (D5) 725 

Opcode 𝑛 = 2 (D3) 725 

Hexadecimal 𝑛 = 2 and Opcode 𝑛 = 2 (D7) 725 

In Table 3 is shown the number of features generated for each representation taking 

into consideration that we only have 7255 samples to use in the model generation. The 
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algorithms in which we prove those different feature sets are Logistic Regression, 

Random Forest, K Nearest Neighbors and Support Vector Machines. 

Important parameters of the machine learning algorithms:  

 Logistic regression: L2 for penalty, balanced class weight, primal formulation.  

 Random Forest: ten estimators, gini impurity, two as minimum sample splits, 

one sample required to be a leaf node, bootstrap samples to build a tree, 

balanced class weight.  

 K nearest neighbors: three neighbors, minkowski metric with p=2.  

 Support Vector Machine: L2 for penalty, square of the hinge loss, error term 

equal 10, dual problem of optimization, radial kernel, gamma equal to 0.5.  

We used the cross-validation of K-Fold as validation method, as shown in Fig. 1, the 

samples representing each family of malware are unbalanced so we use the stratified 

method of the method, to maintain the representativeness of each family when the 

model is generated. 

8 Experiments and Results 

The experiments were made in a computer system with the following characteristic: 

processor Intel Core i5 at 2.8 GHz, 16 Gb of RAM memory and macOS Sierra as 

operative system. The software used were programmed in python 2.7. 

The metrics used to analyze the results were Precision, Recall and F1-score, the 

reason why we do not use accuracy is that our database is unbalanced and we have to 

make sure that the family with the less number of samples (Simda) is detected by the 

model generated. 

Below are the results obtained for each feature set with the different machine 

learning algorithms using K-Fold Cross validation with a value of 𝐾 = 10. 

 

Fig. 9. Precision metric for all the feature sets. 
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Fig 10. Recall metric for all the feature sets. 

 

Fig. 11. F1-score metric for all the feature sets. 

In the state of the art the accuracy is the metric used to evaluate the model 

performance, below is shown a table with some works, and their performance. 

It is possible to make a comparison but it is not strict, because the metrics are not the 

same, we prefer not to use the accuracy due to the characteristics of the database, in 

addition to that in our dataset there are samples that present obfuscation. Even so the 

result that we obtained is competent with those mentioned in table 4. 
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Table 4. Results obtained in the state of the art. 

 Approach Results 

N-gram-based detection of 

new malicious code  

Using n-grams with a value of n from 1 

to 10.  

CNG classification method.  

Maximum 

accuracy of 98%  

Pattern based feature 

selection  

Using 4-gram and selecting fea-tures 

with PCA.  

Support Vector Machine.  

Accuracy of 

97.7%  

Malware detection using sta-

tistical analysis of byte- 

level file content  

Features extraction using statisti-cal and 

information theory fea-tures.  

Boosted J48 algorithm.  

Area Under the 

curve of 96.2%  

Proposal of n-gram based al-

gorithm for malware 

classifi-cation  

Using 4-gram and the top 60 fea-tures.  

Similarity function to calculate.  

Accuracy of 

98%  

Selecting features to classify 

malware  

Using features from metadata in the PE 

header, data about 10 sec-tions and all 

import and exports.  

J48 algorithm.  

Accuracy of 

98%  

9 Discussion 

In all the feature sets the algorithm which the best performance is obtained is Random 

Forest, between them can be observed that using the features generated by the opcode 

representation with a value of 𝑛 = 2  (D2) and the features generated using the 

hexadecimal representation with a value of 𝑛 = 2 plus the generated using the opcode 

representation with a value of 𝑛 = 2 (D6) highest performance is obtained, in both 

cases  the number of features do not fulfil the rule of thumb presented in (4) so it is 

possible that we are overfitting the model to the data, if we look at the results obtained 

using the same feature sets  but with the feature selection applied (D3 and D7) it can be 

observed that the values are not very different and It is possible that we are reducing 

overfitting in order to make better predictions outside the training/validation dataset. 

Generally, the most difficult family to model is the is Obfuscator.ACY, the detection 

rate of this family in the two models with highest performance is very close to hundred 

percent, in the case when the feature selection was applied to the features generated, 

the number of samples well classified decrease at most by six percent. 

Another factor taken into consideration is that the family Simda has very few 

samples, in the four models generated using Random Forest one third of the samples 

belonging to this family were classified correctly. With the four sets mentioned above 

also were obtained the best results for the other three algorithms compared with the 

remaining feature sets. 

The worst results were obtained using the features generated from the hexadecimal 

representation with a value of n=4 for the n-grams, the performance is improved by 

using these features applying feature selection in K Nearest Neighbor and Random 

Forest algorithms, but it gets worse with Logistic Regression and Support Vector 

Machines. 
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10 Conclusions 

As can be observed in the graphs some of the feature sets are good to describe our 

database, the features with which the best performance is achieved are they generated 

using the opcode representation with a value of n=2 and the case in which to these 

features are aggregated the features generated using the hexadecimal representation 

with a value of n=2, applying feature selection to both cases we achieve almost the 

same results, the algorithms in which the best results are obtained are Random Forest 

and Support Vector Machines, that can be because in Random Forest the number of 

features can be large, and in SVM due to the regularization parameter the algorithm is 

more resistant to overfitting. 

In the algorithms KNN and Logistic regression we observe a improvement when the 

features generated with the opcode representation is used compared with these obtained 

using the features generated with the hexadecimal representation, so it can be say that 

the opcode is better to describe our data. 
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