

Analysis of Feature Sets for Malware Family

Classification

Jesús Javier Reyes Torres, Eleazar Aguirre Anaya, Ricardo Menchaca Méndez,

Nareli Cruz Cortés, David Alejandro Robles Ramírez

Instituto Politécnico Nacional, Centro de Investigación en Computación, Mexico

{eaguirre, ric, nareli}@cic.ipn.mx

{b151223, b151224}@sagitario.cic.ipn.mx

Abstract. Malware families are evolving constantly, in order to evade the

detection mechanisms, the authors modify the order of functions, add random

useless code and add new features, it has been observed that these new variations

share common characteristics with previous versions, these existing patterns in

the malware allows us to generate characteristics to describe it, for later use in a

machine learning algorithm. In this paper, we analyze different feature sets

extracted from malicious portable executables which are used as input to a

machine learning algorithm, these features are extracted using n-grams, and are

used in three classification models: Logistic Regression, Random Forest and

Support Vector Machines.

Keywords: malware classification, N-grams, portable executable, machine

learning, logistic regression, random forest, support vector machine.

1 Introduction

Malicious software currently represents a computational security problem, so it is

important to recognize the prevalence and continuing growth of malicious software. In

the year 2015, 16.7 million of new variants of malware were found, according to

Symantec [1]. Most of the new malicious software is designed to evade the anti-

malware systems which use signature based methods to detect it. The authors modify

the order of the functions, add random useless code, obfuscation techniques as packing

in order to evade the detection methods.

The malicious software analysis techniques are classified into dynamic and static

approach. In dynamic analysis, malware’s information is collected from the operating

system at runtime, such information can be system calls, network access and files, in

this approach it is hard to simulate appropriate conditions in which the malicious

software can execute its malicious functions, and at the beginning we do not know the

time period needed to observe the malicious activity of the program. In static analysis,

the information is gathered from the executable file without executing it, this

information represents the expected behavior, in this approach features are extracted by

an analyst, these features can be from the disassemble code or from the hexadecimal

view of the binary.

27

ISSN 1870-4069

Research in Computing Science 143, 2017pp. 27–39; rec. 2017-06-11; acc. 2017-09-02

In this paper we address the classification, using static features extracted from nine

malicious software families obtained from a Microsoft database. Our approach is a non-

signature based method in which we use machine learning to generate a classification

model to classify a given sample in one of the nine families used to generate the model.

1.1 Scope

The most commonly used operating system is the Microsoft Windows operating

system, this make the operating system an attractive target for malware authors. The

principal executable format in Windows is the Portable Executable format (PE), which

is a Microsoft standard. In our work, all the samples are malicious software written in

the Portable Executable format, some of them for 32-bit systems and others for 64-bit

systems.

2 Related Work

Different approaches for malicious software detection have been presented for years,

at first F. Cohen [2] showed that in general the problem of virus detection is

undecidable. In [3] Harris and Miller establish that the characteristics extracted through

the analysis of the binary code provide information about the content and structure, for

example instructions, basic blocks, functions and modules.

Machine learning for malware detection has been widely used, Siddiqui et al. extract

variable length instructions sequences that can identify trojans from clean programs

using data mining techniques [4]. Schultz et al. in [5] present a data mining framework

to detect new malicious executables, they use different algorithms to generate

classification models, the Multi-Naïve Bayes method was reported as the one with the

best accuracy and detection rate over unknown programs with the value of 97.76%.

In [6] different patterns were used to detect the presence of malicious content in

executable files. The analysis is made principally taking in consideration the bytecode

as in [7] where they compute statistical and information-theoretic features in a block-

wise manner to quantify the byte-level file content, and in [8] the authors use a static

analysis methodology for representing malicious codes, their framework seeks to

acquire the most important files, benign and malicious, in order to improve classifier

performance.

N-grams is a way to represent the malicious software content, it consists in generate

substrings with length n from a larger string, since n-gram overlap, they do not capture

just statistics about substrings of length n, but they implicitly capture frequencies of

longer substrings as well [9], in [10] Santos et al. demonstrate that a n-gram-based

methodology signatures can achieve detection of new or unknown malicious software,

Abou-Assaleh et al. [9] demonstrates that applying the CNG method based on byte n-

gram analysis good results can be achieved, in [11] the authors use the n-grams to

develop an automatic malware categorization system (AMCS) by observing the

common characteristics shared by different malicious software families.

The operational code (OpCode) also has been used as static information to represent

malicious software, in [12] O’Kane et al. use OpCode to detect encryped malware using

SVM, Santos et al. in [13] propose a method to detect unknown malware families, using

28

Jesús Javier Reyes Torres, Eleazar Aguirre Anaya, et al.

Research in Computing Science 143, 2017 ISSN 1870-4069

the frequency of appearance of OpCode sequences as a base, and in [14] Bashari Rad

et al. use static analysis to generate histograms of machine instructions frequency to be

used as a features to classify the obfuscated version of metamorphic viruses.

Narayanan et al. in [15] obtained suggestions that every malware software

belonging to a family has a distinct pattern, these patterns are quite similar between a

family and distinguishable across other families.

In [16] Srakaew et al. compare two malware classification methods using data

mining, they use two different types of features: statistical features and abstract

assembly features, they observed that the abstract assembly approach is more

promising, giving high accuracy with less complicated model.

3 Data Set

The data set was obtained from a Microsoft repository, this data set contain nine

different malware families which are Ramnit, Lollipop, Kelihos_ver3, Vundo, Simda,

Tracur, Kelihos_ver1, Obfuscator.ACY and Gatak, the data set is unbalanced as can be

observed in Fig. 1.

Fig. 1. Sample distribution.

4 Methodology

In this section, we describe the malicious software classification process, in our work

we use static features generated from the malicious samples. In general, there are three

distinct stages when a machine learning malicious software detection approach is used,

these sections are: Feature extraction, sometimes feature selection is applied in order to

reduce the dimensionality of the file’s representation, and the generation of a classifier

model using a machine learning algorithm.

The flow followed in this work is shown in Fig. 2. in each stage, different methods

are used and a different data representation is obtained. In the malware analysis process,

the analyst mostly of the time only have the malicious executable to start with, is very

29

Analysis of Feature Sets for Malware Family Classification

Research in Computing Science 143, 2017ISSN 1870-4069

improbable to have the source code of a malware sample. So, it is convenient to

transform the executable into a more manageable representation, in this work the ASM

and hexadecimal view are used as the representation of the malicious files.

Fig. 2. General framework of malware classification system.

These new representations are processed to extract the information with which we

want to work with, from the hexadecimal representation we extract only the

hexadecimal code, the memory addresses are not taken into account.

Fig. 3. Hexadecimal view from an executable file.

30

Jesús Javier Reyes Torres, Eleazar Aguirre Anaya, et al.

Research in Computing Science 143, 2017 ISSN 1870-4069

From the ASM representation we only use the OpCode field, ignoring the label field,

the operand field and comment field:

[𝐶𝑎𝑚𝑝𝑜 𝑑𝑒 𝑒𝑡𝑖𝑞𝑢𝑒𝑡𝑎] [𝐶𝑎𝑚𝑝𝑜 𝑑𝑒 𝑂𝑝𝑐𝑜𝑑𝑒 [𝐶𝑎𝑚𝑝𝑜 𝑑𝑒𝑙 𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑜]] [𝐶𝑎𝑚𝑝𝑜 𝑑𝑒 𝑐𝑜𝑚𝑒𝑛𝑡𝑎𝑟𝑖𝑜𝑠]

The complete set of mnemonics present in the samples is not used, instead we use a

reduced set of mnemonics, considered to be good in describe the malware samples.

These instructions were selected using previous works in this topic.

Table 1. Reduced set of mnemonics.

and fstcs test nop

int setle lea shld

jnz xor jz jb

fild sub jmp std

imul fdvip mov sbb

pop retn movzx setb

loopd ja bt push

jnb add lods dec

pushf call rdtsc rep

inc adc je cmp

5 Feature Extraction

The features are created with n-grams applied to the final representation of the sample,

the final executable representation with the hexadecimal representation is shown in

Figure 5. and the final executable representation with the ASM representation is shown

in Fig. 6.

Fig 4. Hexadecimal representation of an executable file.

To these representation, the n-gram extraction method is applied, for the case of the

hexadecimal we consider each character of the hexadecimal alphabet as a unit.

31

Analysis of Feature Sets for Malware Family Classification

Research in Computing Science 143, 2017ISSN 1870-4069

Fig 5. ASM representation of an executable file.

In Fig. 7. can be observed the process to generate the n-grams from a string with a

value of n equal to 4, the number of n-grams generated from a string with length L can

be calculated as follows:

𝐺𝑟 = 𝐿 − (𝑛 − 1), (1)

where n is the length of the sub-strings.

Fig. 6. N-grams generation process in the hexadecimal representation.

For the case of the ASM representation we consider each mnemonic as a unit, in Fig.

8. can be observed the process to generate the n-grams in this representation.

Fig. 7. N-gram generation process in the ASM representation.

After processing the samples into n-grams, the set of samples S can be represented

as a matrix where each column represents a n-gram term and each row represent a

sample 𝑠 ∈ 𝑆. As we are using the supervised learning approach we also have to include

the label of each sample, in our case we have nine levels, each one representing a

malware family.

As can be observed in Fig. 9. between all the 𝑘 samples which compose 𝑆 =
{𝑠1, 𝑠2, ⋯ , 𝑠𝑘} we generate a set of terms (n-grams) 𝑇 = {𝑡1, 𝑡2, ⋯ , 𝑡𝑚} which is

composed for all the unique strings whit length 𝑛 generated by the extraction over all

32

Jesús Javier Reyes Torres, Eleazar Aguirre Anaya, et al.

Research in Computing Science 143, 2017 ISSN 1870-4069

the sample space, each cell in the terms space is filled with the normalized term

frequency, showed in Equation 2:

𝑡𝑓(𝑡, 𝑑) =
𝑓(𝑡, 𝑑)

𝑚𝑎𝑥{𝑓(𝑤, 𝑑) ∶ 𝑤 ∈ 𝑑}
. (2)

Here we divide the frequency of a term 𝑡 in a determined document 𝑑 by the

maximum frequency of some term 𝑤 in the same document.

Sample label Terms (N-gram)

𝑠1 𝑡1 𝑡2 𝑡3 𝑡4 ⋯ 𝑡𝑚

𝑠2 𝑡1 𝑡2 𝑡3 𝑡4 ⋯ 𝑡𝑚

𝑠3 𝑡1 𝑡2 𝑡3 𝑡4 ⋯ 𝑡𝑚

𝑠4 𝑡1 𝑡2 𝑡3 𝑡4 ⋯ 𝑡𝑚

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

𝑠𝑘 𝑡1 𝑡2 𝑡3 𝑡4 ⋯ 𝑡𝑚

Fig. 8. Samples representation matrix.

6 Feature Selection

With the n-grams a large number of features is generated, this number may vary

according to the unique number of sub-strings that can be found in the extraction

process over the sample space, this number depends in the alphabet used to represent

the data, in our case for the hexadecimal representation the alphabet is 𝐴𝐻 =
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹} which are the characters used to represent

hexadecimal digits, and for the case of the ASM representation, the alphabet 𝐴𝐴𝑆𝑀 is

composed by the forty mnemonics in Table 1.

The number of substrings which represent the features in our machine learning

approach has as an upper bound all the possible unique strings whit length 𝑛 that can

be generated with our alphabet.

𝑈𝐵 = (𝐴𝑙𝑝ℎ𝑎𝑏𝑒𝑡)𝑛. (3)

As we are using machine learning to approximate the functional relationship 𝑓()

between an input 𝑋 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑀} and an output 𝑌 , based in a tuple relation
{𝑋𝑖 , 𝑌𝑖}, 𝑖 = 1, ⋯ , 𝑁, sometimes the output 𝑌 is not determined by the complete set of

the input features {𝑥1, 𝑥2, ⋯ , 𝑥𝑀} , instead, it is decided only by a subset of them

{𝑥(1), 𝑥(2), ⋯ , 𝑥(𝑚)}, where 𝑚 < 𝑀.

The irrelevant features may lead in increase the computational cost and overfitting,

a rule of thumb about the relation between the number of samples and the features to

describe them, this rule claim that the numbers of samples needed to make a good

generalization has to be more or equal to ten times the number of effective features.

𝑁 ≥ 10(𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠). (4)

Our sample space is composed of 7255 malicious software samples, and if for

instance we generate the n-grams with a value of 𝑛 = 4 over the hexadecimal

33

Analysis of Feature Sets for Malware Family Classification

Research in Computing Science 143, 2017ISSN 1870-4069

representation, the upper bound number of features is 65536, which is a large number

of features compared with the number of samples.

7 Feature Sets

We generate different feature sets and use them as an input of a machine learning

algorithms to generate different classification models. The different feature sets

generated are shown below:

 Features generated using hexadecimal representation and the n-gram method

with a value of 𝑛 = 2.

 Features generated using hexadecimal representation and the n-gram method

with a value of 𝑛 = 4.

 Features generated using opcode representation and the n-gram method with

a value of 𝑛 = 2.

Also, a feature vector is generated using those generated by the hexadecimal

representation with a value of 𝑛 = 2 and opcode representation with a value of 𝑛 = 2.
The number of features generated with the different representations are shown in

Table 2.

Table 2. Number of features generated.

Features Number of features

Hexadecimal 𝑛 = 2 (D1) 257

Hexadecimal 𝑛 = 4 (D4) 65537

Opcode 𝑛 = 2 (D2) 1138

Hexadecimal 𝑛 = 2 and Opcode 𝑛 = 2 (D6) 1394

Taking into account the rule of thumb presented in (4) in three cases this is not

fulfilled, so it was proposed to use feature selection to reduce the dimensions of those

vectors.

The feature selection used in this work is the univariate feature selection, using the

𝒳2 metric which is used to test the independence of two events, the method examines

each feature independently to determine the strength of the relationship of the feature

with the response variable.

Table 3. Number of features generated by applying feature selection.

Feature Number of

features

Hexadecimal 𝑛 = 4 (D5) 725

Opcode 𝑛 = 2 (D3) 725

Hexadecimal 𝑛 = 2 and Opcode 𝑛 = 2 (D7) 725

In Table 3 is shown the number of features generated for each representation taking

into consideration that we only have 7255 samples to use in the model generation. The

34

Jesús Javier Reyes Torres, Eleazar Aguirre Anaya, et al.

Research in Computing Science 143, 2017 ISSN 1870-4069

algorithms in which we prove those different feature sets are Logistic Regression,

Random Forest, K Nearest Neighbors and Support Vector Machines.

Important parameters of the machine learning algorithms:

 Logistic regression: L2 for penalty, balanced class weight, primal formulation.

 Random Forest: ten estimators, gini impurity, two as minimum sample splits,

one sample required to be a leaf node, bootstrap samples to build a tree,

balanced class weight.

 K nearest neighbors: three neighbors, minkowski metric with p=2.

 Support Vector Machine: L2 for penalty, square of the hinge loss, error term

equal 10, dual problem of optimization, radial kernel, gamma equal to 0.5.

We used the cross-validation of K-Fold as validation method, as shown in Fig. 1, the

samples representing each family of malware are unbalanced so we use the stratified

method of the method, to maintain the representativeness of each family when the

model is generated.

8 Experiments and Results

The experiments were made in a computer system with the following characteristic:

processor Intel Core i5 at 2.8 GHz, 16 Gb of RAM memory and macOS Sierra as

operative system. The software used were programmed in python 2.7.

The metrics used to analyze the results were Precision, Recall and F1-score, the

reason why we do not use accuracy is that our database is unbalanced and we have to

make sure that the family with the less number of samples (Simda) is detected by the

model generated.

Below are the results obtained for each feature set with the different machine

learning algorithms using K-Fold Cross validation with a value of 𝐾 = 10.

Fig. 9. Precision metric for all the feature sets.

35

Analysis of Feature Sets for Malware Family Classification

Research in Computing Science 143, 2017ISSN 1870-4069

Fig 10. Recall metric for all the feature sets.

Fig. 11. F1-score metric for all the feature sets.

In the state of the art the accuracy is the metric used to evaluate the model

performance, below is shown a table with some works, and their performance.

It is possible to make a comparison but it is not strict, because the metrics are not the

same, we prefer not to use the accuracy due to the characteristics of the database, in

addition to that in our dataset there are samples that present obfuscation. Even so the

result that we obtained is competent with those mentioned in table 4.

36

Jesús Javier Reyes Torres, Eleazar Aguirre Anaya, et al.

Research in Computing Science 143, 2017 ISSN 1870-4069

Table 4. Results obtained in the state of the art.

 Approach Results

N-gram-based detection of

new malicious code

Using n-grams with a value of n from 1

to 10.

CNG classification method.

Maximum

accuracy of 98%

Pattern based feature

selection

Using 4-gram and selecting fea-tures

with PCA.

Support Vector Machine.

Accuracy of

97.7%

Malware detection using sta-

tistical analysis of byte-

level file content

Features extraction using statisti-cal and

information theory fea-tures.

Boosted J48 algorithm.

Area Under the

curve of 96.2%

Proposal of n-gram based al-

gorithm for malware

classifi-cation

Using 4-gram and the top 60 fea-tures.

Similarity function to calculate.

Accuracy of

98%

Selecting features to classify

malware

Using features from metadata in the PE

header, data about 10 sec-tions and all

import and exports.

J48 algorithm.

Accuracy of

98%

9 Discussion

In all the feature sets the algorithm which the best performance is obtained is Random

Forest, between them can be observed that using the features generated by the opcode

representation with a value of 𝑛 = 2 (D2) and the features generated using the

hexadecimal representation with a value of 𝑛 = 2 plus the generated using the opcode

representation with a value of 𝑛 = 2 (D6) highest performance is obtained, in both

cases the number of features do not fulfil the rule of thumb presented in (4) so it is

possible that we are overfitting the model to the data, if we look at the results obtained

using the same feature sets but with the feature selection applied (D3 and D7) it can be

observed that the values are not very different and It is possible that we are reducing

overfitting in order to make better predictions outside the training/validation dataset.

Generally, the most difficult family to model is the is Obfuscator.ACY, the detection

rate of this family in the two models with highest performance is very close to hundred

percent, in the case when the feature selection was applied to the features generated,

the number of samples well classified decrease at most by six percent.

Another factor taken into consideration is that the family Simda has very few

samples, in the four models generated using Random Forest one third of the samples

belonging to this family were classified correctly. With the four sets mentioned above

also were obtained the best results for the other three algorithms compared with the

remaining feature sets.

The worst results were obtained using the features generated from the hexadecimal

representation with a value of n=4 for the n-grams, the performance is improved by

using these features applying feature selection in K Nearest Neighbor and Random

Forest algorithms, but it gets worse with Logistic Regression and Support Vector

Machines.

37

Analysis of Feature Sets for Malware Family Classification

Research in Computing Science 143, 2017ISSN 1870-4069

10 Conclusions

As can be observed in the graphs some of the feature sets are good to describe our

database, the features with which the best performance is achieved are they generated

using the opcode representation with a value of n=2 and the case in which to these

features are aggregated the features generated using the hexadecimal representation

with a value of n=2, applying feature selection to both cases we achieve almost the

same results, the algorithms in which the best results are obtained are Random Forest

and Support Vector Machines, that can be because in Random Forest the number of

features can be large, and in SVM due to the regularization parameter the algorithm is

more resistant to overfitting.

In the algorithms KNN and Logistic regression we observe a improvement when the

features generated with the opcode representation is used compared with these obtained

using the features generated with the hexadecimal representation, so it can be say that

the opcode is better to describe our data.

Acknowledgements. The authors thank the Instituto Politécnico Nacional an

CONACYT for their support in the realization of this work.

References

1. Symantec reports. https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-

2016-en.pdf [Last accessed: 11 08 2017]

2. Cohen, F.: Computer viruses: theory and experiments. Computers & security 6(1), 22–

35 (1987)

3. Harris, L.C., Miller, B. P.: Practical analysis of stripped binary code. ACM SIGARCH

Computer Architecture News 33(5), 63–68 (2005)

4. Siddiqui, M., Wang, M.C., Lee, J.: A survey of data mining techniques for malware

detection using file features. In: Proceedings of the 46th annual southeast regional

conference on xx, pp. 509–510, ACM (2008)

5. Schultz, M.G., Eskin, E., Zadok, F., Stolfo, S.J.: Data mining methods for detection of new

malicious executables. In: Security and Privacy 2001 (S&P 2001), IEEE Symposium on, pp.

38–49 (2001)

6. Liangboonprakong, C., Sornil, O.: Classification of malware families based on n-grams

sequential pattern features. In: Industrial Electronics and Applications (ICIEA), 2013 8th

IEEE Conference on., pp. 777–782. IEEE (2013)

7. Tabish, S.M., Shafiq, M.Z., Farooq, M.: Malware detection using statistical analysis of byte-

level file content. In: Proceedings of the ACM SIGKDD Workshop on CyberSecurity and

Intelligence Informatic, pp. 23–31, ACM (2009)

8. Shabtai, A., Moskovitch, R., Feher, C., Dolev, S., Elovici, Y.: Detecting unknown malicious

code by applying classification techniques on opcode patterns. Security Informatics 1(1),

1 (2012)

9. Abou-Assaleh, T., Cercone, N., Keselj, V., Sweidan, R.: N-gram-based detection of new

malicious code. In: Computer Software and Applications Conference (COMPSAC 2004).

Proceedings of the 28th Annual International, vol. 2, pp. 41–42. IEEE (2004)

10. Santos, I., Penya, Y.K., Devesa, J., Bringas, P.G.: N-grams-based File Signatures for

Malware Detection. ICEIS 2(9), 317–320 (2009)

38

Jesús Javier Reyes Torres, Eleazar Aguirre Anaya, et al.

Research in Computing Science 143, 2017 ISSN 1870-4069

11. Ye, Y., Li, T., Chen, Y., Jiang, Q.: Automatic malware categorization using cluster

ensemble. In: Proceedings of the 16th ACM SIGKDD international conference on

Knowledge discovery and data mining, pp. 95–104 (2010)

12. O'Kane, P., Sezer, S., McLaughlin, K.: N-gram density based malware detection. In:

Computer Applications & Research (WSCAR), 2014 World Symposium on, pp. 1–6.

IEEE (2014)

13. Santos, I., Brezo, F., Nieves, J., Penya, Y.K., Sanz, B., Laorden, C., Bringas, P.G.: Idea:

Opcode-sequence-based malware detection. In: International Symposium on Engineering

Secure Software and Systems. Springer, Berlin, pp. 35–43, Heidelberg (2010)

14. Rad, B.B., Masrom, M., Ibrahim, S.: Opcodes histogram for classifying metamorphic

portable executables malware. In: e-Learning and e-Technologies in Education (ICEEE),

2012 International Conference on, pp. 209–213. IEEE (2012)

15. Narayanan, A., Yang, L., Chen, L., Jinliang, L.: Adaptive and scalable android malware

detection through online learning. In: Neural Networks (IJCNN), 2016 International Joint

Conference on, pp. 2484–2491. IEEE (2016)

16. Piyanuntcharatsr, S.S.W., Adulkasem, S., Chantrapornchai, C.: On the Comparison of

Malware Detection Methods Using Data Mining with Two Feature Sets. International

Journal of Security and Its Applications 9(3), 293–318 (2015)

39

Analysis of Feature Sets for Malware Family Classification

Research in Computing Science 143, 2017ISSN 1870-4069

